
03/20/2005 IceCube DAQ Software

IceCube Collaboration Meeting
March 20, 2005

Surface-DAQ Event Detection System
(Triggering) Status

Dan Wharton (U. Wisc.)

1

03/20/2005 IceCube DAQ Software

DAQ System
status

Surface-DAQ Event Detection System

• Where did we start ?
– Component Requirements

– Interface Definitions

• What have we accomplished ?
– Payload Framework
– Trigger Algorithm Development
– DAQ Component Development

– DAQ-Monolith version 01-00-00 at the South
Pole

• Where are we going?
– Milestones of development

2

03/20/2005 IceCube DAQ Software

DAQ System
status

Where did we start ?

• Component Requirements
– String Processor, Payload Framework (Dan

Wharton, Keary Cavin UW)

– IceTop DataHandler (Divya Swarnkar, BARTOL)

– InIce Trigger (Pat Toale, PSU)

– IceTop Trigger (Dave Seckel, Divya Swarnkar,
BARTOL)

– Global Trigger (Seon-Hee Seo, PSU)

– Event Builder (Marc Hellwig, Mainz)

3

IceCube D
A

Q
 A

rchitectureInIce
Trigger

String
Processor

String
Processor

String
Processor

DOR Driver
DOM Hub Application

DOMApp

HAL

...

...

...

D
A

Q
 C

on
tro

l

Global
Trigger

Ex
pe

rim
en

t C
on

tro
l

AMANDA

IceTop
Trigger

Event Builder

Online

...

InIce
Trigger

String
Processor

String
Processor

String
Processor

...

...

...

Global
Trigger

IceTop
Trigger

Event Builder

Online

...

Concentrated on
communications protocol
between components and
defined interfaces for
handling trigger and hit
information.

03/20/2005 IceCube DAQ Software

DAQ System
status

Interface Definitions

• Fall Meeting at PSU
– Defined Information hierarchy needed for each

component in the chain.

– Created Payload interfaces which allowed work
to proceed in parallel while programming to
interfaces.

• Defined system to be easily integrated to
Splicer for each component.

• Defined methods to read and write binary
data, keeping ‘on-the-wire’ formats centrally
located.

• Defined framework for containing Trigger
and Event data.

6

Defined Component Communications
Requirements

DOM Data

DOM HubDOM

String Processor
Trigger Output Stream

Using TriggerFactory

Hit Data Stream

using ICGDDS

Composite Trigger

Output using

TriggerFactory

InIce

Trigger
Global Trigger

Composite Trigger

Output using

TriggerFactory
Event Builder

Data Request

using ICCS

Buffer Flush Request

using ICCS

Multiplexed data using

"New Format"

Hit Data

TCal Data

Monitor Data

IPayload
Payload Time: IUTCTime
Payload Type : int
Payload Interface Type: int
Payload Length : int

ITriggerPayload
Trigger Type : int
Trigger ConfigID : int
Trigger SourceID : ISourceID

DAQ Payload Framework
Interfaces

version 01-00-00
* = not implemented yet

IHitPayload
Hit Time : IUTCTime
Integrated Charge * : float
DOM ID : IDOMID

ICompositePayload
First Time : IUTCTime
Last Time : IUTCTime
IPayloads : Vector
Hit List (IHitPayloads) * : Vector

IHitDataPayload
Hit Data Record : IHitDataRecord

ITriggerRequestPayload
UID : int
Readout Request : IReadoutRequest

IEventPayload
Event UID : int
Trigger Request Payload : ITriggerRequestPayload
ReadoutData Payloads : Vector of IReadoutDataPayload's

IReadoutDataPayload
SourceID : ISourceID
Request UID : int
Data Payloads (IHitDataPayload's) : Vector
Payload Number in group : int
Last Payload of Group : boolean

03/20/2005 IceCube DAQ Software

DAQ System
status

Surface-DAQ Event Detection System

• Where did we start ?
– Component Requirements

– Interface Definitions

• What have we accomplished ?
– Payload Framework
– Trigger Algorithm Development
– DAQ Component Development

– DAQ-Monolith version 01-00-00 at the South
Pole

• Where are we going?
– Milestones of development

9

03/20/2005 IceCube DAQ Software

DAQ System
status

Interface Implementation

• Payload Framework constructed as
single source of object implementation.
– Simplified debugging and testing

– Single source code base for binary
‘on-the-wire’ formats

– Allowed work to go on in parallel
letting Trigger and Event Builder
code to be built on common code
base, reducing scope.

10

03/20/2005 IceCube DAQ Software

DAQ System
status

Interface Implementation

• Abstracted I/O for Payloads
– Allowed testing of components on an

individual basis.

– Allowed input of TestDAQ Hit data for
input to test systems.

– Allowed component black box testing.

– Allowed components to be ‘chained’
together outside of Global DAQ
Framework (unit testing).

– Paved the way for Monolith while
reducing extra coding requirements.

11

Used interfaces to simplify component
development

String ProcessorDOM Hub InIce Trigger Global Trigger Event Builder1 2 3 4

5

6

7

8

Component Compostion and Connectivity Testing

Defined Internal Component Testing
Requirements

Level 1: Component White Box Testing

Level 2: Intra-Component Black Box Testing

Component

Component

Shared

Algorithms

Algorithms Algorithms Algorithms

Simulated

Input
Output of Simulation

Each of the IceCube DAQ components (subsystems) will be

subjected to white box testing, a software testing technique

where explicit knowledge of the internal workings of the item

being tested are used to select the test data. Each component

developer is responsible for conducting white box testing.

Each component consists of algorithms that are shared with

other components and algorithms that are unique to the

particular application.

Black box testing (functional testing) will be conducted on each

component in the system. In a black box test on a software

design the tester only knows the inputs and what the expected

outcomes should be and not how the program arrives at those

outputs. The tester does not ever examine the programming

code and does not need any further knowledge of the program

other than its specifications.

Typical or expected input data is provided to the black box

component and the outputs are inspected to determine in the

black box component provides the proper results or

functionality.

Testing Conducted by Component Developers

Defined ‘Chained’ component testing using flexible I/O

Level 4: Inter-Component Testing of Multiple Components

Level 3: Inter-Component Testing

Level 2: Intra-Component Testing

Level 1:

Component
Testing

Component

C0

Component

C1

Component

C2

Level 3: Inter-Component Testing

Components that have been

tested at Levels 1 through 3

can be used in Inter-

Component testing of

multiple components.

03/20/2005 IceCube DAQ Software

DAQ System
status

Surface-DAQ Event Detection System

• Where did we start ?
– Component Requirements

– Interface Definitions

• What have we accomplished ?
– Payload Framework
– Trigger Algorithm Development
– DAQ Component Development

– DAQ-Monolith version 01-00-00 at the South
Pole

• Where are we going?
– Milestones of development

15

03/20/2005 IceCube DAQ Software

DAQ System
status

DAQ Component
Development

• January ‘05 Integration Meeting at
UW-PSL
– Defined requirements for output of Event Builder

and created libraries to decode event output as
input to IceTray DataClasses.

– Defined Milestones which serve both testing and
instrumentation requirements.

• Monolith - Single application (TestDAQ input)

• IO - Multiple independent components
(TestDAQ input)

• Discovery - Global DAQ Framework hosting
multiple independent components collecting
data from DomHubs.

16

03/20/2005 IceCube DAQ Software

DAQ System
status

Monolith

• Monolithic program which combines DAQ components outside of the DAQ
Global Framework.

• Uses abstracted I/O in Payload Framework to input Hits from TestDAQ
output.

• Tests components by ‘chaining’ input and output.

• Tests Payload Framework implementations.

• Produces output from Event Builder which is identical to output to be
produced from DAQ Global Framework. This output is made available to
Ice Tray through provided decoder library. Single point of access for event
data as an interface reducing amount of replicated code to maintain. (Erik
Blaufuss, Marc Hellwig)

• Provides vehicle for testing before next generation of DOMHub output is
available.

• Adapted to be used at South Pole for producing events. Triggers produce
good agreement with independent offline analysis.

• Limited life span, good testing platform but missing database and
scalability advantages of the Global DAQ Framework.

17

03/20/2005 IceCube DAQ Software

DAQ System
status

Surface-DAQ Event Detection System

• Where did we start ?
– Component Requirements

– Interface Definitions

• What have we accomplished ?
– Payload Framework
– Trigger Algorithm Development
– DAQ Component Development

– DAQ-Monolith version 01-00-00 at the South
Pole

• Where are we going?
– Milestones of development

20

03/20/2005 IceCube DAQ Software

DAQ System
status

Monolith

• At least one more release
appropriate for the Pole before
end of life.

• Additional Features
– New fields in Event Payload
– Combining IceTop and InIce

triggers to a single pass.

21

03/20/2005 IceCube DAQ Software

DAQ System
status

IO

• Multiple independent DAQ Components which are ‘chained’ together
between separate processes instead of a single monolithic program.

• Progressive movement from file-based input/output to a functioning
channel based processing system.

• Deployment of individual components into the DAQ Global Framework in
which only the StringProcessor component and IceTop DataHandler has
special considerations.

– Data Input still mainly from TestDAQ for system development

• As development continues movement from TestDAQ to DOMHub data.

• Parallel development of StringProcessor and IceTopDataHandler for
processing next generation DOMHub data.

– High Speed Cache of Time ordered Hit data

– Integral Time calibration from TCAL stream instead of using Rapcal
from output of DataCollector. Verification of consistency of time
calibration with with TestDAQ values when run in that mode.

• Data throughput analysis and performance testing

• Thoroughly test subsystems in preparation for ‘Discovery’
22

03/20/2005 IceCube DAQ Software

DAQ System
status

Discovery

• Global DAQ Framework with all components
deployed in JBOSS.

• All components configured through DAQ
Control and configuration.

• Data Collection occurs directly from
instrument through DOMHubs.

• Spiral Development Plan with functional
milestones.

• Provide scalable DAQ for larger instrument
array.

23

03/20/2005 IceCube DAQ Software

DAQ System
status

Conclusions

• Designed and created necessary infrastructure to support
Triggering and flexible staged development.

• Chose development path with measurable and useful milestones.

• Achieved successful deployment of Monolith milestone.

• Are building on pre-tested sub-components as DAQ increases in
complexity which reduces risk and increases reliability.

• Are poised to move from Monolith to IO and on to Discovery.

24

